

Assessing the Effect of Scale, Design, and Indicators in Watershed Assessments

- Used existing Ohio data to do a "retrospective" assessment
- Database consists of over 10,000 potential stations
- Fish, macroinvertebrate, water chemistry, habitat (QHEI)

Retrospective Analyses

Indicators:

- Chemical vs. Biological Indicators
- Fish vs. Macroinvertebrates
- Tiered Aquatic Life Uses vs. Single Aquatic Life Uses

Design

- Random (REMAP) vs. Intensive Surveys
- Geometric
 - · Attainment Status Estimate vs. Sites Sampled
 - · Causes of Impairment Estimates vs. Sites Sampled

Chemical vs. Biological Measure of Aquatic Life Use Status

- Biological data fish/macroinvertebrate data based on tiered aquatic life uses in Ohio
- Water chemistry indicators Conventional pollutants (D.O., pH, etc)
 and toxicants such as ammonia, metals,
 etc.,)

Chemical vs. Biological Indicators of Aquatic Life Use Attainment

$$y = -2912 + 1.497(Year)$$
 $R^2 = 0.58$
 $y = 2673 - 1.31(Year)$ $R^2 = 0.68$

Habitat Condition in Ohio Streams (Poor and Very Poor Habitat)

Fish vs. Macroinvertebrates

- Many stations in the Ohio database have both fish and macroinvertebrate data
- What would be the consequence of using a single organism group?

Aquatic Life Use Attainment: Fish vs. Macros

Tiered Aquatic Life Uses vs. Single Aquatic Life Uses

- Ohio has gradually developed a tiered aquatic life use system from the late 1970s to the early 1990s
- Biological expectations change largely along a anthropogenic physical gradient
- Four primary uses in the tiers: Exceptional Warmwater Habitat (EWH), Warmwater Habitat (WWH), Modified Warmwater Habitat (MWH) and Limited Resource Water (LRW)
- Biological data is ultimate arbiter of use, QHEI and habitat data are important sources of information

OHIO SPECIFIC TEMPLATE FOR STRATIFICATION

DESIGNATED USE OPTIONS ALONG THE BIOAXIS AND BIOLOGICAL CONDITION GRADIENT

EWH Streams

MWH Streams

Aquatic Life Use Support

Causes of Impairment: EWH vs. MWH

Causes of Impairment in Reaches Where the Aquatic Life Use is EWH Causes of Impairment in Reaches
Where the Aquatic Life Use is MWH

Use Attainability Analyses

AQUATIC LIFE USE CHANGES: OHIO WQS (1978 - 2001)

TYPE OF CHANGE

Causes of Impairment

15

Percent of Miles

10

Exceedance Based

25

30

35

305b-Based

20

TEMP

TOX

FLOW

0

5

TSS/OTH

Study Design Issues

- Data from early-mid 1990s Regional EMAP, ECBP ecoregion vs. targeted watersheds
- Late 1990s to present, "geometric" site design in watersheds surveys

Intensive Survey Studies by Watershed vs. EMAP Design

- Compared the results of a REMAP study in the ECBP ecoregion with similar sized streams during watershed surveys (targeted sampling, watershed coverage)
- Are the estimates of attainment accumulated from watershed surveys similar to that from random sample?

<u>M</u>

Cumulative Frequency Plots REMAP and Intensive Survey Data Less Than 10 sq mi

Percent

Cumulative Frequency Plots REMAP and Intensive Survey Data Less Than 10 sq mi

Percent

-----REMAP

Cumulative Frequency Plots REMAP and Intensive Survey Data Less Than 10 sq mi

Habitat Quality at REMAP Sites

Remap QHEI vs. IBI with Reference Site Overlay

How Many Stations to Get a Stable Estimate of Attainment Status?

- Geometric site design results in sites at mouth of watershed and then at $\frac{1}{2}$ drainage size, $\frac{1}{2}$ again, etc until streams of desired size covered
- In larger streams sites added to gain longitudinal profile related to sources, tribs, etc.
- Result is census like design with even geographic coverage

Sugar Creek Subbasin: Results of Geometric Design Assessment

- •TMDL development scale: 11 digit HUC units, 328 statewide
- Mainstem rivers <500 mi² treated separately
- Watershed assessment results initially support UAA process
- Degree and severity of impairment then determined with biocriteria
- Causal associations determined via integrated analysis process
- Supports prioritization ranking
- More focused targeting of restoration activities
- Local stakeholder "buy in" enhanced by scale of design

Initial Data Exploration

- Recombined data, without replacement, for 25 iterations to estimate mean IBI score in watershed.
- Selected scenarios using 5, 10, up to 25 stations per watershed.
- Results illustrated with box and whisker plot for three different watersheds sampled with the geometric design

Duck Creek

Raccoon Creek

Wabash River Watershed

Causes of Impairment

- How does the number of stations affect the assessment of causes of impairment in a watershed?
- · Examples from previous watersheds:

Conclusions

Indicators

- Tiered Aquatic Life Uses resulted in more protection for high quality waters; did not over-protect more limited waters - this could have strong affect on TMDL lists
- Multiple organism groups detected more impaired waters, largely though better identification of physically modified reaches

Conclusions, cont'd

- Water chemistry changes responsible for improvements in biota in Ohio waters
- Biological data better able to detect physical stressors not measured by water chemistry
- Some agreement between biology and water chemistry could also be coincidental
- Only a small proportion of sites show "independent application" conflict and most of these explainable

Monitoring Design

- Number of stations needed for an accurate estimate of watershed condition can vary with:
 - Actual variability in environmental conditions
 - Precision of monitoring tools
 - Needs for watershed management (e.g., identification of status vs. identification of causes (e.g., TMDLs, etc.)